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Abstract. The estimate derived by Henshaw, Kreiss, and Reyna for the smallest scale 

present in solutions of the two-dimensional incompressible Navier-Stokes equations is 

employed to obtain convergent pseudospectral approximations. These solutions are then 

compared with those obtained by a number of commonly used numerical methods. 

If the viscosity term is deleted and the energy in high wave numbers removed by 

setting the amplitudes of all wave numbers above a certain point in the spectrum to 

zero, the "chopped" solution differs considerably from the convergent solution, even 

at early times. In the case that the regular viscosity is replaced by a hyperviscosity 

term, i.e., the square of the Laplacian, we also derive an estimate for the smallest 
scale present. If the coefficient of hyperviscosity is chosen so that the spectrum of the 

hyperviscosity solution disappears at the same point as for the regular viscosity solution, 
the hyperviscosity solution is also completely different from the convergent solution. If 
we "tune" the hyperviscosity coefficient, then the solutions are similar in amplitude or 

phase, but not both. 

The solution obtained by a second-order difference method with twice the number of 

points as the pseudospectral model, or a fourth-order difference method with the same 

number of points as the pseudospectral model, is essentially identical to the convergent 
solution. This is reasonable since most of the energy of the solution is contained in the 

lower part of the spectrum. 

1. Introduction. Three-dimensional turbulence simulations based on the in- 
compressible Navier-Stokes equations require an inordinate amount of computer 
power. Therefore, many numerical studies of turbulence (Lilly [9], Fox and Orszag 
[5], Herring et al. [7], Fornberg [4]) have been based on the two-dimensional ver- 
sion of these equations, which we briefly discuss in Section 2. Recently, an upper 
bound on the number of waves that are necessary to resolve solutions of the two- 
dimensional equations with a given kinematic viscosity have been derived (Henshaw 
et al. [6]). In Section 3 we discuss the estimate and use it to obtain convergent 
numerical solutions. Since we have convergent numerical solutions of the two- 
dimensional equations, we can compare a number of numerical methods that have 
been used for the computation of two-dimensional turbulence. 

To remove energy in high wave numbers, a number of numerical models have 
incorporated "chopping", i.e., the models set the amplitude of all waves above a 
fixed point in the spectrum to zero periodically in time (e.g. Fornberg [4]). There is 
no analytic method to determine at which point to chop the spectrum or how often 
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to perform the chopping, so it must be done by numerical investigation. Section 4 
compares convergent solutions for a fixed kinematic viscosity with those obtained 
from chopping the spectrum in order to explore the robustness of the chopping 
method. 

In an attempt to use a smaller effective kinematic viscosity, some models have 
employed higher-order dissipation mechanisms which damp the high wave numbers 
more selectively (McWilliams [10]). In Section 5 we derive estimates similar to 
those obtained by Henshaw et al. [6] for the case where the dissipation is the square 
of the Laplacian. A comparison of convergent numerical solutions from regular 
and hyperviscosity cases indicates differences and similarities that can be expected 
when using different forms of viscosity. 

Early turbulence models employed finite difference methods in both space and 
time (e.g. Lilly [9]). More recently, the pseudospectral method has been employed 
for increased spatial accuracy (Fox and Orszag [5], Brachet et al. [2]). Section 6 
compares solutions obtained from second- and fourth-order finite difference spatial 
methods with convergent solutions from the pseudospectral spatial method. This 
comparison is very important since finite difference methods for the initial-boundary 
problem are easier to develop and analyze, but conceivably might be less accurate 
than pseudospectral methods. 

2. Mathematical and Numerical Models. A commonly used mathematical 
model of turbulence is the incompressible Navier-Stokes system of equations which 
in Cartesian coordinates (x, y, z) can be written as 

(2.1a) DV +vq5=uv2v, 
Dt 

(2.1b) V V = 0, 

where t is time, V = (u, v, w) is the velocity, k is the pressure p divided by the 
constant density p,vu is the kinematic viscosity (the viscosity ,u divided by the 
density), and D is the substantial derivative defined as 

DV = at + (V * V)V =a +V(V2/2)-V x V x V. Dt ait a 

Define the vorticity Z as 

(2.2) Z=VxV. 

Applying the curl operator to (2.1a) and (2.2) and using standard vector identities 
(Book [1]), we obtain the following equations for Z and V: 

(2.3a) at + (V V)Z-V(V. Z) + (Z V)V = vV2Z, 

(2.3b) V2V = -V x Z, 

and system (2.3) is equivalent to system (2.1). 
In this paper we will only study the two-dimensional version of (2.3), i.e., we 

will assume V = (u,v,0) and Z = (0,0, ), where ' is only a function of x and y. 
For this case the last two terms on the left-hand side of (2.3a) are zero, and we can 
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write the system as 

(2.4a) ft + Ufx + Vfy = VV2f, 

(2.4b) V2u =_'Y 

(2.4c) V2v = age 

As the divergence 6 = ux + vY is zero, we can also write (2.4a) in the form 

at + (U')x + (Vj)y = VV2a. 

We consider system (2.4) in the region R = {(xy) I 0 < x < 27r, 0 < y < 27r} 
and assume the solutions of interest are periodic in x and y. The initial conditions 
will be chosen so that the initial energy spectrum has one of several specified decay 
rates, which we will describe in the following section. 

We approximate solutions of (2.4) by two different numerical methods. For either 
method we first approximate R by the finite difference grid G = { (xi, yj) I xi = 
(i - 3)As 1 < i < 2N + 4; yj = (j - 3)As, 1 < j < 2N + 4}, where the grid 
spacing As is determined as As = ir/N with N a given power of two. The points 
outside of R are used to implement the periodic boundary conditions for finite 
difference approximations in space. The time increment At is chosen so that the 
CFL criterion is satisfied. We will use the standard notation for grid functions, i.e., 
uin t u(xi, yj, nAt) and nominal subscripts or superscripts will not appear in the 
difference equations. 

The first numerical model is based on the second-order leap-frog scheme in time 
and the pseudospectral method in space. Let f denote the Fourier transform of ' 

and let kT = (k1, k2) be the index variable of the Fourier coefficients. We replace 
(2.4) by the approximation 

(2.5a) fn+i = fn-i - 2At[ik, (up) + ik2(1k) + .5v(k 2 + k 2wn+1 + n-1)] 

(2.5b) -(kl + k2)fi =-ik2 , 

(2.5c) -(k2 + k2)i = ik1j. 

Note that we are updating the Fourier coefficients of ' rather than the function 
' itself. We have made an implicit approximation of the diffusion to maintain 

second-order accuracy in time, and it is much easier to solve the resulting system 
of equations in spectral space. Fourier interpolation is used to compute the deriva- 
tives (Kreiss and Oliger [8]). The transforms are performed using Temperton's 
implementation of the FFT. 

The second numerical model is based on the second-order leap-frog method in 
time and second- or fourth-order finite difference approximations in space. In this 
case we replace (2.4) by the approximation 

(2.6a) n+1 = n-1 - 2At[Dx(up) + Dy(v') -vL-n-l)] 

where Dx (Dy) is the standard centered second- or fourth-order accurate finite 
difference approximation of a ( a ) and L is the standard second-order accurate 
approximation of the Laplacian operator. When using second-order approximations 
for Dx and Dy, we can use (2.5b) and (2.5c) to solve for u and v, or a standard 
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package which essentially solves the system 

(2.7a) - 4(As)-2 [sin2 (.5kjAs) + sin2 (.5k2As)]ui = -i(As)-1 sin(k2As)~, 
(2.7b) - 4(As)-2 [sin2 (.5k1 As) + sin2 (.5k2As)]i = i(As)-1 sin(kAs)s. 

When using fourth-order approximations for D. and Dy, we use (2.5b) and (2.5c) 
to solve for u and v, so that the elliptic solver is at least fourth-order accurate. The 
approximation of the Laplacian for this case will be discussed in a later section. 

3. Convergence Results. As system (2.4) is highly nonlinear, few analytic 
solutions are known, and most studies have involved the use of numerical models 
(e.g. Fornberg [4], McWilliams [10], Brachet et al. [2]). Recently, Henshaw et al. 
[6] have obtained precise estimates on the Fourier coefficients of solutions of (2.4) 
in the form 

(3.1) sup if? < [Kq (a) IDuIl 2q 

where a is a positive constant which can be chosen as small as desired, q is any 
positive integer, Kq (a) is a constant depending on q and a only, and 

IDuloo = max[Iu,(., t)lIo Iuy(,t)Ioo, j-, IvQt)Ko IvY(., t)Ko]. 

The maximum principle applied to (2.4) shows that kI t)KIo < I,0) I 00 We 
have normalized the initial data such that Is(k 0) K < 1. Then it follows that 

IDuloo K 1. The constants Kq(a) can be estimated explicitly (see also Section 5). 
For q < 3 we obtain for all ax > 0 

Kq < Cj 11(., ?)jlq I/ 

where denotes the L2-norm and 

C1 = 2 1 C2 = 31/4 C3 = 101/6. 

Therefore, for practical purposes, we can set a = 0 and Kq = 1. 
This estimate gives us the ability to determine very accurately the wave number 

above which the spectrum of the solution is negligible, i.e., for all k with 

(3.2) Ikl > 

the spectral coefficients are essentially zero. We define the "changeover" wave 
number kc above which the spectrum is assured to be negligible as 

(3.3) kc = V1/2, 

and we expect that a numerical model that treats kc waves accurately in both 
directions will give us the correct solution of (2.4). 

As a test of the estimate (3.3), we have run the pseudospectral model for the cases 
V = 10-4 and v = 10-5 with 32, 64, 128, and 256 waves on a number of different 
initial conditions. Each of the initial conditions is chosen to have a different energy 
spectrum decay rate. The energy E is defined as (McWilliams [10]) 

E = 2 f(U2 +v 2) dx dy, 
2 (2r) 2 J 
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and we can use Parseval's equality to write the energy in terms of the spectral 
coefficients of the velocity components or stream function: 

E = EZ(II2 + K 12) = - ik2/I2 + Iiki4'2) 

(3.4) 
k k 

= ZEIkI2I12 1= El, 
k 1=1 

where 

E1=~ Z 1k12 1412, El = kl f2 
1klE11 

with It = [1-.5,1+.5). In deriving (3.4), we have assumed that the initial conditions 
contain no energy in wave number k = 0. 

The number of coefficients in El is proportional to the area of the annulus with 
radius I and width Al = 1. This implies that if we want an energy spectrum 
proportional to I-r for large 1, then the stream function coefficients / must be 
proportional to Ikl(r+3)/2 for large 1. We chose four spectra used by previous 
authors. The amplitudes of the spectral coefficients for the four cases are given by 

) 1gX1 {Cllkl-2, JkI < 205 .5 

(36) kgI = 0C21kl-3, Iki < 20.5} ( -3) 
{0, IkI ? 20.5k r 

(3.7) 1I1 = C3{lkl-2[l+ (Ikl/6)4]-1}1/2, Ik <20.5 (r 3), {0, Iki ? 20.5J - 

(3.8) 1I = C4.021/2lkl-le-.1251k12 (El .02ke- 251k12 ), 

and the phases in all cases are chosen as random numbers in the interval [0, 2w]. 
The initial distribution of energy (3.5) and (3.6) were used by Fornberg [4], (3.7) 
by McWilliams [10], and (3.8) by Brachet et al. [2]. Since we have assumed that 

IDulI = 1, the corresponding solutions must satisfy 

(3.9) k&(,jt)1Ko < 2. 

We chose the constants Ci, i = 1,.. .,4, so that 1k(, 0)Ko = 1. Although we used 
all four initial conditions, we will only show the results for computations based on 
the initial condition (3.7). 

We first ran the pseudospectral model using (3.7) to determine the initial stream 
function. Choosing C3 so that 1k(,0)loo = 1, IDuloo .6 and we expect that we 
will need N > 77 in order to compute the solution correctly. Figure 1 is a contour 
plot of ' at t = 20 for the case N = 32. The contour interval is 10-1. The large 
amplitude in high wave numbers in small areas is typical of cases with insufficient 
resolution. Figures 2a and 2b are contour plots of ' at t = 20 for the cases N = 64 
and N = 128, respectively. The contour interval is .09 in both plots. As can be seen 
from the plots, we essentially have the correct solution at N = 64, which is near the 
point predicted by the estimate (3.2). Figures 3a and 3b show the corresponding 
solutions at t = 200. The contour interval is .03 in both plots. Although the contour 
plots for the resolutions N = 64 and N = 128 appear identical, the contours for 
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FIGURE 1 

The vorticity f at t = 20 computed by the pseudospectral 
model (v = 10-4,N = 32) from the initial conditions 
(3.7). The contour interval is 1 x 10-1. 

the lower resolution are actually slightly shifted from those of the higher resolution. 
We also ran the case N = 80, and then the contours are exactly aligned. To check 
the effect of the time truncation error, we also ran a case with N = 96 and A\t half 
the value for the case N = 128. The contours were again exactly aligned, so that 
the temporal truncation error is not affecting the solution. This is surprising, as 
one might at first think that the temporal truncation error would dominate. We 
shall discuss this in the section on difference methods. 

The estimate (3.2) only depends on the kinematic viscosity v. For v 10-4, 

we also obtained convergence of the pseudospectral model for solutions resulting 
from the initial conditions determined by (3.5), (3.6), and (3.8). The fact that the 
numerical model converges to a solution gives us a base on which to test a number 
of previous analytic theories and numerical methods. We will perform these studies 
in the remaining sections. 

The convergence of the numerical model indicates that the solution is not sen- 
sitive to small perturbations. As a further test of the effect of perturbations on 
the solution, we computed the initial stream function coefficients according to (3.7) 
and then added to each coefficient a term of exactly the same form but with .01 
of the amplitude and a different random phase. The normalization j{( 0)loK = 1 
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The difference map of the two plots in Figure 4. The 
contour interval is 2 x 10-2. 

was carried out after the addition of the perturbation. Figures 4a and 4b are plots 
at t = 100 of the solutions resulting from the unperturbed and perturbed initial 
conditions (3.7). The contour interval is .05 in both plots. It is clear that the two 
solutions are quite similar, even this far in the integration. The relative L2 and Loo 
errors at this time are .22 and .56, respectively. To better determine the nature 
of the error, in Figure 5 the difference between the two solutions is plotted. The 
contour interval is .02 for this plot. As can be seen from the difference map, the 
largest errors occur in the narrow sheets where the gradients are large. This general 
pattern is evident throughout the integration. 

4. Chopping. A number of models have set the amplitudes of all Fourier 
coefficients above a given wave number to zero at regular intervals as a mechanism 
to dissipate the energy in the high wave numbers. This method is commonly referred 
to as chopping the spectrum. Usually, chopping is used to stabilize a model that 
has insufficient resolution, i.e, if we used the correct viscosity coefficient the model 
would blow up. Fornberg [4] used chopping in place of the normal viscosity in his 
study of two-dimensional turbulence. In his study he tried chopping the spectrum 
at different intervals. We have run the pseudospectral model using chopping instead 
of viscosity on several of the initial conditions given in Section 3. In Figures 6a 
and 6b we show the solution obtained from the initial condition (3.7) at t = 20 

FIGURE 5 
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and t = 200, respectively. The contour interval is .1 for both plots. In this case 
we have chopped the upper third of the spectrum every 60 time steps. We also 
ran the model with chopping intervals of 15, 30, and 120 with similar results. As 
can be seen from the plots, the solution at t = 20 is similar to the correct solution 
shown in Figure 2a but has considerably more structure. At t = 200 the solution 
is completely different from the correct solution shown in Figure 2b. Thus, for 
short-term integrations the solution is not very sensitive to the chopping interval, 
but the solution is not very accurate. 

If we run the chopping model on initial conditions whose Fourier amplitudes are 
not zero above the chosen chopping wave number (and this would normally be the 
case for general initial conditions), then the effect of the chopping on a short-term 
integration is much more serious. Figure 7a is a plot of the converged solution at 
t = 20 using v = 10-4 and the initial condition 

(4.1) 1fI = C3{IkI-2[1 + (Ikl/6)4V-}112, Ikl > 0. 

Figure 7b shows the corresponding chopping solution at t = 20. The contour 
intervals are .06 and .1 in Figure 7a and Figure 7b, respectively. Clearly, the 
chopping solution in this case is much worse. 

From the comparisons above we see that whether or not chopping gives approx- 
imately the correct solution depends on the initial conditions and the length of 
integration. Thus we feel that the method is not very robust. However, we have 
only used the method for v = 10-4. It is possible that for smaller values of L/ the 
results might be better. 

5. Hyperviscosity. A number of modelers have used alternate forms of dissi- 
pation to remove the energy from higher wave numbers in a more selective fashion, 
i.e., there is less damping of low wave numbers and more damping of high wave 
numbers as compared to the normal viscosity. For example, McWilliams [10] has 
used the square of the Laplacian, which he calls hyperviscosity, in place of the 
Laplacian, so that he uses the system 

(5.1a) ft + Ug + Vfy = _VV4f, 

(5.lb) V2u = _yV 
(5.1c) V2v = A, 

instead of (2.4). In this section we want to apply the analysis used by Henshaw 
et al. [6] to (5.1) to understand the impact of the modification of the form of the 
dissipation. 

In the case of (5.1) the estimate corresponding to (3.1) is 

[Kq~a)~D1I4?Q 2q 
(5.2) sup y < ?Kq(C)jDuj / ] 

_> L V1/4+ajkI 

We shall indicate the proof. Let 

( fg) = f g dx dy, i1f 112= (f, f), 

denote the (real) L2 scalar product and norm, and use the notation 

J2(t) - IlaP(,t)/axpII2 + jjdp(., t)/dYpI2 
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Integration by parts gives us 

(5.3) 11~I12 = -2vIIV2fII2 < -2vJ22 < 0. 

Therefore, 

(5.4) Ik&,t)112 < j(. 0)112, 21/f J2dt < Ik(,O)112. 

Let DP f = aP I/9xP1 9yP2, P = P1 +P2, denote a general derivative of order p. From 
(5.1a), 

(tplPsll2- = ptP-1 IID2 ~II2-2tPI + 2vtP(D V4D2), 

where 

I - (D 2p s,D 2(u) + D2p(vVfY)). 

For p = 1, we obtain 

I = II + 2III, II = (D2f, (D2U) ~x + (D2v)s), III = (D2s, DuDfx + DvDfy), 

and integration by parts gives us 

III = I (Df, D3UFX + D3vsY) 

< 2 (IIDx 112 + IIDsy 112 + IID3UII2 + IID3VII2), 

IIII < ? DuI, (IIDfx 112 + IIDfy 112 + 211D2 ~II2). 

Fourier analysis tells us that 

IIUxxxII2 + IIUyyY112 + IlVXXX112 + IlvYYY 112 < j2, 

Ikfxx112 + 211xy 112 + IkfY 112 < 2J2. 

Also, 

1k1 < 2IDulI0. 

Therefore, 

t (tJ22) < J22 + 12tlDulooJ22 - 2vtJ42. 

Thus, 

TJ22 < j J2 dt + 12TIDuloo J22 dt -2v t J4f dt, 

i.e., by (5.4), 

<l2TIIJuloo + 1II(\ 12 ______ 

(5.5a) 2 < 2vT I Vi'-')II - [6 I)I02 +U(1/1T)J I(.,?0)112, 
T rT 

(5.5b) 2l i tJ42 dt < (12TIDuloo + 1) J22 dt. 

For p = 2 we have 

I=II+1II, 
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where for any -yj > 0 

1111 = I(D4~7 (D4u)~x + (D4v)~y) + (D4', D3u(Dfx) + D 3v(Dfy)) 
= I(D 5, (D 3u)x + (D 3v)fy)I 

< (2( (D5fx112 + IID5foII2) + 1 k12 (IID3uI12 + IID3VII2), 

11111 = I(D4f, (D2u)D2 x + (D2v)D2fy) + (D 4, (Du)D3fx + (Dv)D3fy)I 
= I(D5f, (Du)D2 x + (Dv)D 2fy)I 

< (2 IID5%xI2 + IID5 112) + IDu1 2 2 V1)2ID2I. 
Thus, 

a (t2j42) <2J2t2 2- - 
1 12 

j22_t2 [2u (Y1 + -2)] 62. 

For -oy =-Y2 = 1 we obtain from (5.4) and (5.5) 

T2J42(T) < I (2tJ42) 3DU t2J2dt 

(8TIDuloo + 1) Ik(. O) 112 + 3TI2 1Du Ij(.,O)I112 

i.e., 

(5.6) J42 (T) < [ 2 00 + 0(1 T)] jjls. ?) 112 

Therefore, we can also estimate v ,jT t2J2 dt by the right-hand side of (5.6). 
This process can be continued for p = 3,4, and we obtain the bounds 

J22P(T) < [KP ( v ) + 0(11T)] jj1. ,?)112. 

For p > 4 the estimates become slightly more complicated. However, as in Henshaw 
et al. [6], we can prove 

J22p(T) < [Kp (a) (~ 
lo 

v ) + 0(11T)] 11 ,?) 12 

By Parseval's relation, 

1k(T) 12 Ikl4p < const J22p (T), 
and therefore the desired inequality follows. In view of (5.4), (5.5), and (5.6), for 
practical purposes we can again choose a = 0 and Kp(a) = 1. 

The main reason for using hyperviscosity instead of regular viscosity is a desire 
to compute a solution with a smaller kinematic viscosity coefficient. This raises the 
question as to what hyperviscosity coefficient to choose to obtain the same solution 
as for the regular viscosity case. A reasonable constraint on the coefficient of the 
hyperviscosity is given by the condition that the spectrum using hyperviscosity 
should become negligible at the same wave number as when using normal viscosity, 
i.e., 

IDul 1/44-1/4 = IDuI 1/2v-l/2 
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FIGURE 1 0 

The vorticity ' at t = 200 computed by the second-order 
difference model (v = 10-4, N = 128) from the initial 
conditions (3.7). The contour interval is 3 x 10-2. 

where V2 and v4 are the coefficients of the normal and hyperviscosity, respectively. 
For a kinematic viscosity coefficient V2 = 10-5 this means we should use a hyper- 
viscosity coefficient V4 Z 10-10. When we used this value for the hyperviscosity 
coefficient, the solution was completely different from the regular viscosity solution. 
Thus we were forced to try different values of v4. Figures 8a and 8b are plots of 
the vorticity ' at t = 200 using the initial conditions (4.1) for the regular viscosity 
(V2 = 10-5) and hyperviscosity (v1 = 10-8) version of the pseudospectral model, 
respectively. The contour interval is .09 in both plots. As the results show, the 
general features of the solution (vortex sheets, roll up, and vortex blobs) are sim- 
ilar. However, the actual details are quite different. It is possible to have either 
the blob amplitude or spatial extent similar, but not both. These differences are 
more pronounced for larger values of V2. Thus it is conceivable that this difference 
would disappear for even smaller values of the viscosity coefficients. However, then 
the number of waves has to be increased considerably and none of the existing cal- 
culations have sufficient resolution. Also, there is always a period when the flow is 
maximal dissipative, i.e., V2Jj2 = 0(1) or 2j2= 0(1), and it is during this time 
that the difference is created. Therefore, it seems to be unlikely that the difference 
between the solutions will disappear as the viscosity coefficients approach zero. 
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6. Difference Methods. Many investigations of two-dimensional turbulence 
have been based on finite difference models (Lilly [9], Deem and Zabusky [3]). More 
recently, the pseudospectral method has become popular (e.g., Fox and Orszag [5]). 
For a given set of initial conditions we want to compare solutions computed by 
second- and fourth-order finite difference methods with the solution computed by 
the pseudospectral method on the same grid. Figures 9a and 9b are plots of the 
vorticity at t = 20 and t = 200, respectively, obtained from the second-order 
finite difference model (v = i0', N = 64) using the initial conditions (3.7). 
The contour intervals are the same as those in Figures 2a and 3a for comparison 
with those plots. The second-order finite difference solution is close to that of the 
pseudospectral solution at t = 20, but at t = 200 they are completely different. 
Thus, if computations are only needed for a short period of time, the second- 
order finite difference model is perfectly adequate, but for long periods of time it 
is not. We also ran the second-order model with twice the number of grid points 
(N = 128). Figure 10 shows the vorticity ' at t = 200 for that case. With double 
the resolution of the spectral model, the second-order method produces a solution 
which is acceptable for this length of integration. 

FIGURE 1 1 

The vorticity ' at t = 200 computed by the fourth-order 
difference model (V = 10-4, N = 64) from the initial con- 
ditions (3.7). The contour interval is 3 x 10-2. 
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Figure 11 is a plot of the vorticity at t = 200 computed by the fourth-order finite 
difference model (v = 10-4, N = 64) using the initial conditions (3.7). The contour 
interval is the same as in Figure 3a. Clearly, the solutions are essentially identical, 
and this is also true for the case v = 10-5. It is clear from these comparisons that 
the fourth-order finite differences are sufficient to reduce the spatial error to a size 
which is totally acceptable, i.e., the fourth-order model is adequate for both short- 
and long-term integrations. We note that in the fourth-order model the diffusion 
term was lagged in time and only treated by a second-order approximation in space. 

Perhaps it is surprising that the difference methods give such good results. This 
can be explained in the following manner. The first 15 wave numbers of the spec- 
trum contain the majority of the energy of the solution. The fourth-order solution 
was calculated with 128 x 128 grid points. Therefore, there are enough points per 
wave length to resolve the flow (Kreiss and Oliger [8]). This also explains why the 
time integration does not cause any problems. We used the same time step for the 
finite difference methods as for the pseudospectral method. Since this is more than 
a factor of two times smaller than necessary for stability, the time error is reduced 
to an acceptable level similar to the case of the second-order difference method with 
twice the number of grid points. 
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